Introduction

Motivation

- Direct application for improved medical treatments of neurological disorders
 - Alzheimer’s, Parkinson’s, Autism
- Critical knowledge for tissue engineering
- Improved diagnosis for
 - Abnormal vascular structures (tumors)
 - Stroke conditions
- More effective methods of blocking angiogenesis of tumors

Objective

- Models of the vascular system of the brain can be created by designing fractal structures. These mathematical models can then be used to solve the hemodynamics of the brain vasculature.

Vasculature

Fractals

Fractals – A complex geometric figure that is made of identical repeated shapes on all scales. This creates self-similarity throughout the figure. Fractals in nature are called random fractals and have a finite range of invariance.

MATLAB generated fractal structures

Fractal Models

- **Mathematical Approach**
 - (1) Isolate branched vessel from Scanning Electron Microscope (SEM) image.
 - (2) Mark position of vessels with computer pixels.
 - (3) Connect pixel points to create skeletal structure.
 - (4) Model is created that represents original vessel. This begins to appear as a fractal tree structure.

- **Physiological Approach**
 - Scanning Electron Microscope image
 - Fractal Skeleton from SEM image

Conclusion

Using fractal structures created from SEM images of the brain vasculature, equations can be generated to solve the hemodynamics of the vessels including flux (in/out), pressure, and distension.

Teaching Module Plan

Brain Model

- Students will be able to design and construct a model of the human brain including the cerebrum, cerebellum, and brain stem as well as cerebral arteries.

Communications in Science

- Students will develop formal and informal communication skills to share scientific knowledge and understanding.

Acknowledgements

- NSF EEC-0502272 Grant, Chicago Science Teacher Research (CSTR) Program Director, A. Linninger
- Members of LPPD, Andreas Linninger, Michalis Xenos, MahadevaBharath R. Somayaji
- REU Fellows of LPPD